Gemini + Klavis AI Integration
This tutorial demonstrates how to use Google’s Gemini with function calling with Klavis MCP (Model Context Protocol) servers.Prerequisites
Before we begin, you’ll need:Google AI API Key
Get your API key from Google AI Studio
Klavis AI API Key
Get your API key from Klavis AI
Installation
First, install the required packages:Full Code Examples
For complete working examples, check out the source code:Setup Environment Variables
Case Study 1: Gemini + YouTube MCP Server
Step 1 - Create YouTube MCP Server using Klavis
Step 2 - Create general method to use MCP Server with Gemini
Step 3 - Summarize your favorite video!
Case Study 2: Gemini + Gmail MCP Server (OAuth needed)
Summary
This tutorial demonstrated how to integrate Google’s Gemini with function calling capabilities with Klavis MCP servers to create powerful AI applications. We covered two practical examples: 🎥 YouTube Integration: Built an AI assistant that can automatically summarize YouTube videos by extracting transcripts and providing detailed, timestamped summaries. 📧 Gmail Integration: Created an AI-powered email assistant that can send emails through Gmail with OAuth authentication.Next Steps
Explore More MCP Servers
Try other available servers like Slack, Notion, GitHub, etc.
Multimodal Workflows
Build workflows that combine text, images, and other media
Production Deployment
Scale these patterns for production applications
Custom Integrations
Build custom MCP servers for your specific needs
Useful Resources
- Google AI Documentation
- Gemini API Reference
- Klavis AI Documentation
- MCP Protocol Specification
- Klavis MCP Servers