Prerequisites

To get the most out of this guide, you’ll need to:

1. Create a Firecrawl Web Search MCP Server

Use the following endpoint to create a new remote Firecrawl Web Search MCP server instance:

Request

curl --request POST \
  --url https://api.klavis.ai/mcp-server/instance/create \
  --header 'Authorization: Bearer <YOUR_API_KEY>' \
  --header 'Content-Type: application/json' \
  --data '{
  "serverName": "Firecrawl Web Search",
  "userId": "<YOUR_USER_ID>",
  "platformName": "<YOUR_PLATFORM_NAME>"
}'

Response

{
  "serverUrl": "https://firecrawl-websearch-mcp-server.klavis.ai/sse?instance_id=<instance-id>",
  "instanceId": "<instance-id>"
}
serverUrl specifies the endpoint of the Firecrawl Web Search MCP server, which allows you to perform real-time web searches.
instanceId is used for authentication and identification of your server instance.

2. Configure Firecrawl API Key

To use the Firecrawl Deep Research MCP Server, you need to configure it with your Firecrawl API key.

Setting up Firecrawl API Key

curl --request POST \
  --url https://api.klavis.ai/mcp-server/instance/set-auth-token \
  --header 'Authorization: Bearer <YOUR_KLAVIS_API_KEY>' \
  --header 'Content-Type: application/json' \
  --data '{
  "instanceId": "<YOUR_INSTANCE_ID>",
  "authToken": "<YOUR_FIRECRAWL_API_KEY>"
}'

Response

{
  "success": true,
  "message": "<string>"
}

Explore MCP Server Tools