No-Code

Connect to enterprise-grade MCP servers instantly!

Get Started →


For Developer

Follow the instructions below to integrate YouTube MCP server to your AI application using our API or SDK.

Prerequisites

1. Create a YouTube MCP Server

Use the following endpoint to create a new remote YouTube MCP server instance:

Request

from klavis import Klavis
from klavis.types import McpServerName, ConnectionType

klavis_client = Klavis(api_key="<YOUR_API_KEY>")

# Create a YouTube MCP server instance
youtube_server = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.YOUTUBE,
    user_id="<YOUR_USER_ID>",
    platform_name="<YOUR_PLATFORM_NAME>",
)

Response

{
  "serverUrl": "https://youtube-mcp-server.klavis.ai/mcp/?instance_id=<instance-id>",
  "instanceId": "<instance-id>"
}
serverUrl specifies the endpoint of the YouTube MCP server, which you can connect and use this MCP Server to interact with YouTube data and functionality.
instanceId is used for authentication and identification of your server instance.

Explore MCP Server Tools